Blocking Sets of Almost Rédei Type
نویسندگان
چکیده
We study minimal blocking sets in PG(2, q) having q + m points outside some fixed line. If 0 < m < ( √ q)/2 then either the blocking set is large, or every line contains 1 mod p points of the blocking set, where p is the characteristic of the field GF (q).
منابع مشابه
Linear Point Sets and Rédei Type k-blocking Sets in PG(n, q)
In this paper, k-blocking sets in PG(n, q), being of Rédei type, are investigated. A standard method to construct Rédei type k-blocking sets in PG(n, q) is to construct a cone having as base a Rédei type k′-blocking set in a subspace of PG(n, q). But also other Rédei type k-blocking sets in PG(n, q), which are not cones, exist. We give in this article a condition on the parameters of a Rédei ty...
متن کاملBlocking Sets and Derivable Partial Spreads
We prove that a GF(q)-linear Rédei blocking set of size qt + qt−1 + · · · + q + 1 of PG(2, qt ) defines a derivable partial spread of PG(2t − 1, q). Using such a relationship, we are able to prove that there are at least two inequivalent Rédei minimal blocking sets of size qt + qt−1 + · · · + q + 1 in PG(2, qt ), if t ≥ 4.
متن کاملBlocking sets of Rédei type in projective Hjelmslev planes
The aim of this paper is to generalize the notion of a Rédei type blocking set to projective Hjelmslev planes. In what follows, we focus on Hjelmslev planes over chain rings of nilpotencey index 2, i.e. chain rings with rad R 6= (0) and (rad R)2 = (0). Thus we have always |R| = q2, where R/ rad R ∼= Fq. Chain rings with this property have been classified in [1, 6]. If q = pr there are exactly r...
متن کاملTwo Remarks on Blocking Sets and Nuclei in Planes of Prime Order
In this paper we characterize a sporadic non-Rédei type blocking set of PG(2, 7) having minimum cardinality, and derive an upper bound for the number of nuclei of sets in PG(2, q) having less than q + 1 points. Our methods involve polynomials over finite fields, and work mainly for planes of prime order.
متن کاملFlocks of Cones: Star Flocks
The concept of a flock of a quadratic cone is generalized to arbitrary cones. Flocks whose planes contain a common point are called star flocks. Star flocks can be described in terms of their coordinate functions. If the cone is “big enough”, the star flocks it admits can be classified by means of a connection with certain blocking sets of Rédei type.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 78 شماره
صفحات -
تاریخ انتشار 1997